020547-IR-1



## THE UNIVERSITY OF MICHIGAN COLLEGE OF ENGINEERING

Department of Machanical Engineering and Applied Mechanics
Heat Transfer Laboratory

(NASA-CR-173503) MODELING OF ZERO GRAVITY VENTING Interia Report (Michigan Univ.) 42 p HC A03/Mr 201 CSCL 20D N84-23854

Unclas G3/34 19143

Interim Report

Modeling of Zero Gravity Venting

Herman Merte, Jr.

GRANT NAG 3 403

Studies of Two-Phase Heat Transfer Under Reduced Gravity NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA/Lewis Research Center

Administered Through:
DIVISION OF RESEARCH DEVELOPMENT AND ADMINISTRATION
ANN ARBOP, MICHIGAN

MAY 1984

# ORIGINAL PAGE IS

### MODELING OF ZERO GRAVITY VENTING

The University of Michigan Ann Arbor, MI

#### **ABSTRACT**

An experimental investigation of the venting of cylindrical containers partially filled with initially saturated liquids was previously conducted under zero-gravity conditions at the NASA Lewis Research Center 5-second zero gravity facility, and compared with an analytical model which determined the effect of interfacial mass transfer on the uliage pressure response during venting. A new model is proposed here to improve the estimation of the interfacial mass transfer. Duhammel's superposition integral is incorporated in this analysis to approximate the transient temperature response of the interface, treating the liquid as a semi-infinite solid with conduction heat transfer. The results show that this approach to estimating interfacial mass transfer gives improved response when compared to previous models. However, the present model still predicts a pressure decrease greater than those in the experiments reported.

### INTRODUCTION

The use of high-energy liquid propellants in the space program has led to a need for information concerning the thermodynamic behavior of cryogenic fluids in tanks which are vented or depressurized to space. Low vapor vent rates are used as a method of tank pressure control. The task of venting in low gravity has been successfully accomplished during a number of past missions with venting systems that rely exclusively on auxiliary thrusters to actively position the liquid propellant away from the tank vent. This method of pressure control was adequate for short term missions and deemed economically more feasible than the weight penalty of additional insulation. (Ref. 7) The objective of the present study is to predict the pressure response of a saturated liquid-vapor system when undergoing a venting or depressurization process in zero gravity at low vent rates.

Fig. 1 is a schematic of a typical test container, with the liquid vapor interface assuming a hemispherical shape in zero-gravity. Fig. 2 is a schematic of the proposed venting model. The 1-v interface is assumed to be planar, but with the surface area of the hemispherical interface, and the contents of the container are assumed to be at saturation conditions corresponding to Pv prior to venting, t<0. Upon initiation of venting, t>0, all properties are considered spacially uniform but time dependent, except for the liquid, whose temperature varies spacially one-dimensionally as well. The interfacial temperature is the saturation temperature corresponding to the system pressure Pv. The analysis consists of applying the appropriate governing equations to three control volumes; the vapor, the liquid-vapor interface, and the liquid. Figures 3-5

are schematics of these three control volumes. The vapor is treated as a lumped or uniform property control volume, and the conservation of mass and energy are applied. The interfacial mass transfer is found by applying the conservation of energy to the liquid-vapor interface. The liquid is treated as a semi-infinite planar solid in order to calculate the temperature gradient of the liquid at the interface.

For purposes of comparison, an adiabatic model, which assumes no interfacial mass transfer, is constructed. The analysis, presented in Appendix D, is otherwise identical to that developed below. This model, when compared with the interfacial mass transfer model, will aid in evaluating the impact of interfacial mass transfer on the pressure response of the system.

The pressure responses determined with the interfacial mass transfer and adiabatic models are compared with the results from previous models and with the experimental results obtained from the short duration drop tower tests conducted at the Lewis zero-gravity facility.

### NOMENCLATURE

| a   | thermal diffusivity, m2,sec              |
|-----|------------------------------------------|
| Α   | area, m2                                 |
| Ca  | discharge coefficient                    |
| Cv  | specific heat at constant volume, J/kg-K |
| 8   | penetration depth, m                     |
| h   | specific enthalpy, J/kg                  |
| hfg | heat of vaporization, J/kg               |
| k   | thermal conductivity, W/m-K              |
| m   | mass, kg                                 |
| n   | unit normal vector                       |
| P   | pressure, N/m2                           |
| q   | heat flux, W/m2                          |
| R   | gas constant, m-N/kg-K                   |
| T   | temperature, K                           |
| t   | time, sec                                |
| U   | internal energy, J                       |
| u   | specific internal energy, J/kg           |
| V   | velocity, m/sec                          |

### Subscripts:

e vented vapor

ORIGINAL PAGE IS OF POOR QUALITY i liquid-vapor interface ORIGINAL PAGE 19
liquid OF POOR QUALITY
o initial
sat saturated conditions
v ullage vapor

### **ANALYSIS**

The integral form of the continuity and energy equations for a control volume are used.

The continuity equation is

$$\int_{V} (\frac{\partial f}{\partial t}) dV + \int_{A} f \vec{v} \cdot \vec{n} dA = 0$$
 (1)

The volume V may be assumed constant, since the actual volume changes due evaporation are small. Then, Eq. (1) becomes

$$\frac{d}{dt} \int_{\psi} \int d\psi = - \int_{\phi} \int \nabla \cdot \vec{n} \, dA \qquad (2)$$

For the vapor region, Eq. (2) becomes.

where mi is the rate of generation of vapor at the liquid-vapor interface, and me is the mass flow rate of the vapor vented. For the liquid region

The energy equation is

### ORIGINAL PAGE 19 OF POOR QUALITY

For purposes of the present analysis, it will be assumed that:

- 1. Heat transfer from the walls is negligibly small.
- 2. No heat transfer takes place between the vapor and the 1-v interface.
- 3. The internal energy in the vapor is spacially uniform, varying only with time.
- The vapor volume is constant (volume increases due to evaporation are neglected).
- 5. The interface surface area remains constant.
- 6. The liquid mass is large compared to the amount evaporated.
- 7. All vapor properties are uniform at the state defined by Tv and Pv.
- 8. The interface temperature Ti-Tsat @ Pv.
- 9. The liquid-vapor mixture is initially saturated at Tv-T1-Tsat @ Pv.

For the relatively short test times being modeled, along with the low venting rates assumed, these assumptions are reasonable. For longer test times, conduction from the wall: must be taken into consideration. For the vapor then, Eq. (5) reduces to

$$\frac{d}{dt}(m_v u_v) + \dot{m}_{ehv} - \dot{m}_{ihi} = 0$$
 (6)

Expanding Eq. (6):

$$uv \frac{dmv}{dt} + mv \frac{duv}{dt} + mehv - mihi = 0$$
 (7)

Now, assuming Cv-constant over a small temperature range, and substituting Eq. (3) into Eq. (7):

$$pmrCv\frac{dT_v}{dt} + mi(u_v - hi) + me(h_v - u_v) = 0$$
 (8)

Expressions for mil and me will now be developed.

The mass flow rate through the vent, me, is determined by using a classical choked flow analysis (Ref. 9). Since the gas is vented directly to a vacuum, the choked flow assumption is valid and the exiting mass flow rate is a function of upstream vapor properties only, given by:

$$\dot{m}e = \frac{P_{\nu} C_{b} A_{T} K_{b}}{(RT_{\nu})^{\prime\prime 2}}$$
(9)

where Cd is an experimentally determined discharge coefficient and:

$$K_b = \frac{\left(\frac{C_P}{C_V}\right)^{1/2} \left[\frac{2}{\left(\frac{C_P}{C_V} + 1\right)^{\frac{1}{2}}}\right]^{\frac{1}{2}} \frac{\partial Riginal Page 19}{\partial Poor Quality}}{2\left(\frac{C_P}{C_V} + 1\right)}$$
(10)

The rate of vapor generation, mi, is determined from the conservation of energy equation (Eq. (5)) applied to the liquid-vapor interface. Assuming no heat transfer to the vapor, all energy transferred to the interface by conduction in the liquid results in vaporizaion of liquid at the interface. Eq. (5) reduces to:

$$g_{\ell} = m_i h_{\ell g}$$
 (11)

For relatively short periods, where the temperature boundary layer is small compared to any radii of curvature present at the interface, the liquid may be treated as a semi-infinite planar solid. The surface area term, Al, will be the surface area of the hemisphere, the shape the interface takes in zero gravity. Referring to Fig. 5, the one dimensional conduction equation is:

$$q_{\ell} = -k_{\ell} A_{i} \left( \frac{dT}{dx} \right) \bigg|_{X=0}$$
 (12)

Combining equations (11) and (12) gives

$$\dot{m}_{i} = \frac{-k_{i} \left(\frac{dT}{dx}\right)|_{x=0}}{h_{fg}}$$
 (13)

Thus, the problem of determining to interfacial mass transfer is reduced to determining the temperature gradient of the liquid at the interface, which requires that the transient temperature distribution in the liquid near the 1-v interface be determined. If the liquid near the 1-v interface can be considered to approximate a one-dimensional semi-infinite solid in it's thermal behavior the analytic solution for a step change in surface temperature, in connection with the finite form of Duhammel's superposition integral, can be used to determine the transient temperature distribution in the liquid. The time varying interface temperature is taken as the saturation temperature corresponding to the instantaneous system pressure, which must be determined appropriately from the system of governing equations.

Accordingly, the differential form of the governing equation and the initial and boundary conditions for the one-dimensional semi-infinite solid, initially at uniform temperature To and with a step change in surface temperature to Ti are:

$$\frac{\partial T}{\partial t} = a \frac{\partial^2 T}{\partial x^2} \tag{14}$$

$$T(x,0) - T_0 \tag{15}$$

$$T(0,1) = T_0 \tag{16}$$

### ORIGINAL PAGE 19 OF POOR QUALITY

$$T(\infty, \pm) = T_0 \tag{17}$$

The solution is (Ref. 2):

$$\frac{T(x,t)-T_i}{T_o-T_i}=\operatorname{erf}\left(\frac{X}{2(at)^{1/2}}\right) \qquad (18)$$

The interface temperature, being the saturation temperature corresponding to the ullage pressure, will be time varying in the present case since the pressure will change as the tank is vented. This time varying boundary condition Ti(t) is incorporated into the solution using Duhammel's superpostion intregral (Ref. 2) in the form:

$$\Theta(x,t) = \Theta_i(0) \cdot \psi(x,t) + \int_0^t \psi(x,t-s) \frac{d\Theta_i(s)}{ds} ds \qquad (19)$$

Here,

$$\Theta(X,t) = T(X,t) - T_0$$

$$\Theta(t) = T(t) - T_0$$
(20)

and we let

$$\mathcal{O}(x,t) \equiv \frac{\Theta(x,t)}{\Theta_i(t)} \tag{21}$$

 $\psi(x,t)$  is the unsteady temperature resulting from a stepwise unit increase in surface temperature, relative to a uniform initial temperature. If the increase is kept at zero until a certain time t-s, and at that instant raised to unity and maintained constant, the new temperature  $\phi(x,t)$  may be expressed in terms of  $\psi(x,t)$  as

$$\phi(x,t) = \begin{cases} o, & t < s \\ \psi(x,t-s), & t > s \end{cases}$$
 (22)

The solution for  $\psi(x,t)$  is given by Eq.(18), transformed to the form of Eq. (21) as

$$\psi(x,t) = \frac{\Phi(x,t)}{\Phi i} = \operatorname{erfc}\left(\frac{x}{2(at)^{1/2}}\right) \tag{23}$$

Solution of the system of equations for the venting problem will be performed in discrete time steps, and the discrete form of Eq. (19) is given by:

$$\Phi(x,t) = \Phi_i(o) \cdot \psi(x,t) + \sum_{m=1}^{n} \Delta \Phi_{i_m} \cdot \psi(x,t-s_m)$$
 (24)

where

$$\Delta \Theta i_m = \Theta i (S_m) - \Theta i (S_{m-1})$$
 (25)

Here, n is the total number of time steps into which the process has been divided, m is a running time index, 1 < m < n, and  $\Delta \Theta_{i,m}$  is the incremental change in surface temperature, related to the system vapor pressure.

It is difficult to obtain a temperature gradient in the liquid at the interface to the desired degree of precision from the solution in the form of Eq. (24). Rather, the procedure followed here is to compute the instantaneous temperatures at a finite number of points in the liquid near the interface, using Eq. (24), and fit these points to a third order polynomial using a least squares fit. The polynomial used is of the form:

$$T = A + Bx + Cx^2 + Dx^3$$
 (26)

The temperature gradient of the liquid at the 1-v interface, x-0, is then:

$$\frac{dT}{dx}\Big|_{x=0} = B \tag{27}$$

The number and spacing of the nodes at which the temperatures of the liquid are to be calculated, and with which the coefficients A, B, C, and D in Eq. (26) will be determined, must next be specified. Six nodes were taken arbitrarily as being sufficient to obtain the four coefficients in Eq. (26). Intuitively, nodes nearest to the 1-v interface will give the most accurate value of the liquid temperature gradient at the 1-v interface. The method used was to estimate a temperature penetration depth, , taken here to be the depth at which the dimensionless temperature change computed by equation (18) is 95%. This is determined as:

$$0.95 = \operatorname{erf}\left(\frac{S}{2(at)^{n}}\right) \tag{28}$$

Oľ

$$S = 1.39 \cdot 2 (at)^{1/2}$$
 (29)

The actual penetration depth will be somewhat less than this value, since the actual system does not undergo a single step change in surface temperature, but rather a transient change in surface temperature. The six equally spaced nodes are taken to be within the 10% of this penetration depth nearest the 1-v interface, shown schematically in Fig. 6.

Now that the temperature of the liquid at each of the six nodes near the 1-v interface is known, the constants AB,C, and D of Eq. (26) may be determined. A least squares algorithm was used (Ref. 4), which determines the polynomial coefficients which minimize the error between the data points and the polynomial.

### ORIGINAL PAGE 13 OF POOR QUALITY

Appendix A describes a test program devised to evaluate the effect of the fraction of penetration depth used when fitting a polynomial by computing the accuracy of the polynomial in predicting the temperature gradient at the 1-v interface. The temperature gradient obtained with the above procedure is compared with the analytical value for a single step change in surface temperature, being the most severe test possible. This is done for different fractions of the penetration depth. Figures A1 and A2 show that with the nodes spaced in a region of 10% of the penetration depth from the surface and using a third order order polynomial, an error of less than 0.5% in temperature gradient at the surface is obtained.

For the adiabatic model, the mass transfer at the interface is taken as zero, and the above analysis for the interfacial mass transfer is not used.

when combined with the proper initial conditions, equations (3), (8), (9), and (13), along with the liquid temperature distribution, provide a complete description of the vapor space. These equations were numerically solved by computer. A program listing and description is included in appendix B. A comparison of these results with the experimental data available to date is presented below.

#### RESULTS

The model described above differs primarily in two respects from previous models used to predict the pressure response of an initially saturated liquid vapor mixture vented to a vacuum in zero gravity. The most significant difference is the procedure used to approximate the interfacial mass transfer. The present model assumes the liquid to be a semi-infinite solid with a planar surface and a transient surface temperature determined from the coupling between the liquid conduction process and the vapor behavior. Duhammel's superpostion integral is used to incorporate the effect of a transient surface temperature in computing the liquid temperature profile. The interfacial mass flux is then determined from the temperature gradient at the liquid-vapor interface.

The second difference from past models is that the vapor temperature is *not* assumed to be at the saturation temperature corresponding to the vapor pressure. This now couples the energy and continuity equations for the vapor system and makes for a more difficult numerical solution. The effect of this change in assumption can be seen in figures 7 and 8, where both the mean vapor temperature and the instantaneous saturation temperatures are plotted for two test runs. The difference between the vapor temperature and the saturation temperature can be as much as 30 degrees K. The vapor temperature is higher than the saturation temperature and is thus superneated. Since me is inversely proportional to vapor temperature, higher vapor temperatures result in slightly lower vent rates, and thus slower ullage pressure drop.

Comparison between the pressure response predicted by the present model, the present adiabatic model, and previous models (Ref. 1) are given in Table 1, together with measurements obtained previously (Ref. 1). The data in Table 1 shows that the proposed model gives pressure responses closer to the experimental data than does any previous model. The data in Table 1 also shows that both the present model and previous models incorporating interfacial mass transfer yield better results than does the adiabatic model, which assumes no interfacial mass transfer. It is evident that interfacial mass transfer must be considered when using low vent rates such as the ones used in this study. Hence,

### ORIGINAL PAGE IS

it may be concluded that the proposed model better approximates interfacial mass transfer than previous models, but the sizeable error when compared to the experimental data indicates that certain elements are still lacking in the description of the process. It is also possible that the experiments themselves should reexamined.

Additional detailed transient behavior of Runs 2 and 4 in Table 1 are plotted in figures 9-14, with system pressures in Figs. 9 and 10, vent rates in Figs. 11 and 12, and evaporation rates in Figs. 13 and 14. Run 4 has a discharge area 2.2 times that for Run 2, approximately the same initial volume, and an initial pressure approximately 10% higher. This is consistent with the higher pressure drop rate, higher vent rate, and higher evaporation rate that occurs wilth Run 4.

Evaluation of this model assumes that the experimental data accurately describes the system being modeled. The small test vessels used would tend to make the geometry of the system important. The flow coefficients, Cd, were experimentally determined, and there is no way of evaluating their accuracy. Future experiments should be conducted before making a final evaluation of the model proposed here.

#### CONCLUSION

An analytical model was constructed to predict the pressure response of cylindrical containers initially filled with a saturated liquid-vapor mixture vented to a vacuum under zero gravity conditions. The response predicted by this model was compared to that of previous models and to the experimental data obtained at the NASA Lewis Researach Center.

Previous models predicted too large a pressure drop. The model proposed here gives a pressure response closer to the experimental data than other models, but still predicts too large a pressure drop. This means that the present model still underestimates the amount of interfacial mass transfer. Higher rates of evaporation will yield a lower pressure drop in the system. An additional source of vapor formation not considered in the present model is the thin liquid layer existing at the liquid-vapor-solid triple interline formed by a hemispherical liquid-vapor interface. It can be expected that rapid evaporation would take place in this region, involving conduction effects from the container walls (neglected in the present analysis). This would reduce the pressure drop predicted by the model, with perhaps better agreement with experiments conducted to date.

Future experiments might be considered for comparison with the present model in which the presence of the triple interline would be minimized by using larger size vessels and by conducting the experiments at standard earth gravity.

### TABLE 1. SUMMARY OF PARAMETERS AND RESULTS

# ORIGINAL PAGE IS

| Te:<br>Rui<br>No |         | Nozzle<br>dianeter | Discharge coeffic. | Initial ullage pressure | Initial ullage temp. | Final<br>exp.<br>pressure | Final<br>analy.<br>press. | Final past analy. press. | final adiabatic press. | anal. | Dinen-<br>sionless<br>exp.<br>press dro, |
|------------------|---------|--------------------|--------------------|-------------------------|----------------------|---------------------------|---------------------------|--------------------------|------------------------|-------|------------------------------------------|
|                  | n3      | n                  | Cd                 | kPa                     | K                    | kPa                       | kPa                       | КРа                      | kPa                    |       |                                          |
| 1                | 1.93E-4 | 0.406E-3           | 0.64               | 89.6                    | 294.3                | 86.2                      | 85.2                      | 81.6                     | 83.2                   | 0.07  | 0.06                                     |
| 2                | 2.01    | 0.889              | 0.69               | 87.9                    | 294.7                | 70.3                      | 64.4                      | 56.3                     | 56.1                   | 0.31  | 0.25                                     |
| 3                | 1.90    | 1.07               | 0.86               | 91.0                    | 293.7                | 60.7                      | 46.8                      | 40.7                     | 33.6                   | 0.48  | 0.33                                     |
| 4                | 1.93    | 1.32               | 0.875              | 97.2                    | 296.5                | 53.8                      | 37.9                      | 29.4                     | 21.8                   | 0.62  | 0.46                                     |
| 5                | 1.93    | 1.93               | 0.77               | 101.0                   | 295.4                | 41.4                      | 21.4                      | 13.1                     | 5.3                    | 0.78  | 0.57                                     |



Figure 1. - Schematic of typical test container.

### ORIGINAL PAGE 19 OF POOR QUALITY





Figure 2. - Schematic drawing of venting model.







Figure 4. - Interface region control volume.

Figure 3. - Vapor region control volume.

Figure 5. - Liquid region control volume.



Figure 6. - Location of nodes in liquid.

















### ORIGINAL PAGE IS OF POOR QUALITY

### REFERENCES

- 1. Labus, Thomas L.; Aydelott, John C.; and Amling, Geraldine E.: Zero Gravity Venting of Three Refrigerants. NASA TN D-7480, 1974.
- 2. Ampect, Vedat S.: Conduction Heat Transfer. 1966, Addison Wesley Publishing Co.

- 3. Anon.: Thermodynamic Properties of FR-11. 1965, E.I. DuPont De Nemours & Co.
- Burden, Richard L.; Faires, Douglas J.; and Reynolds, Albert C.: Numerical Analysis. 1981 Pridle, Weber, & Schmidt. pp 205-8, 319-26.
- Harding, L. Systems of Linear Equations and Matrix Inversions. Computing Certer Memo # 326. The University of Michigan Computing Center, Ann Arbor, MI.
- 6. Van Wylen, Gordon J.; and Sonntag, Richard E.: Fundamentals of Classical Thermodynamics. 1978, John Wiley and Sons, New York, New York. pp. 386-389.
- 7. Lacovic, Raymond F.; Yeh, Frederick C.; Szabo, Steven V., Jr.; Brun, R.J.; Stofan, Andrew J.; and Berns, James A.: Management of Cryogenic Propellants in a Full-Scale Orbiting Space Vehicle. NASA TN D-4571, 1968.
- Thomas, P. D.; and Morse, F. H.: Analytical Solution for the Phase Change in a Suddenly Pressurized Liquid-Vapor System. Advances in Cryogenic Engineering. Vol. 8. K. D. Timmerhaus, ed. Plenum Press, 1962, pp. 550-562.
- 9. White, Frank M.: Fluid Mechanics. 1979, McGraw-Hill, Inc. New York. pp. 530-1.

ORIGINAL PAGE IS OF POOR QUALITY

### APPENDIX A

### EXAMINATION OF THIRD ORDER CURVE FIT ACCURACY

A test was run to determine the accuracy of the third order least squares curve fit used in calculating the interfacial mass transfer. The test also determined the spacing of the nodes in the liquid which would give the best curve fit. The temperature distribution in a semi-infinite solid with constant surface temperature is derived in the ANALYSIS and given by Eq. (18):

$$\frac{T(x,t)-T_c}{T_0-T_c} = erf\left(\frac{x}{2(at)^{1/2}}\right)$$
(A1)

From this the temperature gradient at x=0 is:

$$\frac{dT}{dx}\Big|_{x=0} = \frac{\overline{I_o - I_i}}{(\pi a \pm)^{1/2}}$$
(A2)

Equation (A2) represents an exact solution for the gradient. An approximate solution is obtained via the method described in ANALYSIS. The penetration depth is calculated. A percentage of this depth near the surface is then divided into six equally spaced nodes at which the temperature is calculated. First, second, and third order curves are fit to the data obtained using different percentages of the penetration depth. As can be expected, the calculated gradient and intercepts were most accurate when the nodes were space closest to the interface, i.e. a small percentage of the penetration depth. Figures A1 and A2 show that using a third order polynomial with nodes very close to the interface give the best gradient and intercept results.

Note that equation (A2) gives the exact gradient for a semi-infinite solid with a step change in surface temperature. This can not be used in determining interfacial mass transfer in the proposed model of this report since the surface temperature in reality is a function of time.



Fraction of Penetration Depth
Fig. A1.-Error in Surface Temperature Gradient vs Fraction of Penet. Depth



### APPENDIX B

### COMPUTER ALGORITHM

The computer algorithm used to numerically solve the governing equations consists of a main program and eight subroutines. The basic outline of the numerical solution is as follows. At time= t, the vapor temperature and mass(Y(1), Y(2)) are known, along with the ullage volume, which is constant. Thus the state of the vapor and the interface are defined and all thermodynamic properties can be determined. With the state at time=t completely defined, values of Y(1) and Y(2) at t=t + 0.05 are found by solving the governing differential equations by a fourth-order Runge-Kutta method. With the values of Y(1) and Y(2) now determined at time=t + 0.05, this state is now completely defined, and the algorithm can be incremented by one time step and repeated. The following is a brief description of the function of each subroutine.

- RUNGE A fourth order Runge-Kutta algorithm to solve first order differential equations with non-constant coefficients. This routine uses a fixed time step, with the time step being the independent variable.
- DERY Calculates the derivatives of Y(1) and Y(2) with respect to time for use in the RUNGE algorithm.
- PROPS Determines the necessaary thermodynamic properties of the working fluid, given vapor temperature, mass, and volume. The four basic equations used to calculate the properties are; vapor-pressure equation, equation of state, density of saturated liquid, and heat capacity of vapor(Ref.3). All properties can be determined from these equations(App.C).
- NEWTTS The vapor-pressure equation is of the form P=f(Tsat). This routine uses the Newton-Rapson method(Ref.4) to solve this equation for Tsat, given P.
- NEWTV The equation of state is of the form P=f(v, Tv). This routine uses the Newton-Rapson method to solve the equation of state for the specific volume v, given P and Tv. These values of v are needed in PROPS to calculate internal energy and enthalpy.
- MASS Determines the rate of mass transfer across the liquid-vapor interface. As discussed in ANALYSIS, the liquid temperature gradient at the interface is needed to compute the interfacial mass transfer. Duhammel's superposition integral and the one dimensional conduction equation for a semi-infinite solid with a step change in surface temperature are used to compute the temperature of liquid at various depths near the interface. A third order least squares curve fit(Ref.4) is used to find the best curve through these points and thus the surface temperature gradient.
- SLUD Along with SLIR, solves the system of equations describing the third order least squares curve fit. This routine computes the LU decomposition of the coefficient matrix.
- SLIR Computes the solution to the system of linear equations AX=B using iterative refinement. SLUD and SLIR are called from the MTS Numerical Analysis Library(Ref.5). Similar routines are readily available for users not on the MTS network(Ref.4).

| FORTRAN<br>Symbol | Engineering<br>Symbol | Description                         | Units         |
|-------------------|-----------------------|-------------------------------------|---------------|
| <b>Oy</b>         |                       |                                     |               |
| AS                | As                    | Interface surface area              | ft2           |
| AT                | At                    | Nozzle cross sectional area         | ft2           |
| $\alpha$          | Cd                    | Discharge coefficient               | -             |
| CVTVP             | CV                    | Specific heat of vapor @ TV,P       | ft-lbf/slug-R |
| HFGTS             | hfg                   | Enthalpy of evaporation @ TS        | ft-lbf/slug   |
| HVTSP             | hg                    | Enthalpy of vapor @ TS,P            | ft-lbf/slug   |
| HVTVP             | h                     | Enthalpy of vapor @ TV,P            | ft-lbf/slug   |
| KLTS              | k                     | Thermal conductivity of liquid @ TS | lbf/sec-R     |
| ME                | me                    | Macs flow rate of vapor vented      | slug/sec      |
| MI                | mi                    | Mass flux across 1-v interface      | slug/sec      |
| P                 | P                     | Ullage pressure                     | lbf/in2       |
| PR                | Pref                  | Peference pressure                  | lbf/in2       |
| R                 | R                     | Ideal gas constant                  | psi-ft3/lbm—R |
| T                 | t                     | Time                                | seconds       |
| TC                | Tc                    | Critical temperature                | R             |
| TR                | Tref                  | Reference pressure                  | R             |
| TS                | Tsat                  | Saturation temperature & P          | R             |
| UVTRPR            | uref                  | Reference internal energy @ TR,PR   | ft-lbf/slug   |
| UVTSP             | ug                    | Internal energy of vapor @ TS,P     | ft-lbf/slug   |
| UVTVP             | u                     | Internal energy of vapor @ TV,P     | ft-lbf/slug   |
| W                 | Vu                    | Ullage volume                       | ft3           |
| VLTSP             | VF                    | Specific volume of liquid @ TS,P    | ft3/1bm       |
| WTSP              | vg                    | Specific volume of vapor @ TS,P     | ft3/1bm       |
| WTYP              | v                     | Specific volume of vapor @ TV,P     | ft3/1bm       |
| WTVPR             | v                     | Specific volume of vapor & TV, PR   | ft3/1bm       |
| Y(1)              | Tv                    | Temperature of ullage vapor         | R             |
| Y(2)              | m∨                    | Mass of ullage vapor                | 1 bm          |
| YP(1)             | dT√/dt                | Time rate of change of vapor temp.  | R/sec         |
| YP(2)             | dmv/dt                | Time rate of change of vapor mass   | 1bm/sec       |

ORIGINAL PAGE 19 OF POOR QUALITY



Figure 6. - Algorithm Flow Chart
B1

```
Listing of MAIN+... at 10:07:26 on APR 6, 1984 for CCid=SS3X ORIGINAL PAGE 19
                                                                   OF POOR QUALITY
     2
               READ IN CONSTANTS FOR FREON-11 VAPOR PRESSURE CURVE, EQUATION
      3
               OF STATE, HEAT CAPACITY OF THE VAPOR, AND DENSITY OF SATURATED
      4
            C LIQUID.
      5
      6
                    BLOCK DATA
      7
                    REAL A(6), B(6), C(6), D(6), E(6), F(6), R, CK
     8
                 1 SB,P,MS,TCRIT,TR,PR,CD,CC,AT,UV,AS,KLTS
     9
            C
     10
                    COMMON/ALPHA/A, B, C, D, E, F, R, CC, SB, CD, AT, UV, TCRIT, TR, PR,
                 1
                        UVTRPR, AS
     11
     12
            C
     13
                   DATA A/0.0,-3.126759,-0.025341,0.001687277,-2.35893E-5,
                 1 1.057504E8/
     14
     15
                  DATA B/0.0,0.001318523,4.875121E-5,-1.805062E-6,2.448303E-8,
                  1 -9.472103E4/
     16
     17
            C
                   DATA C/0.0,-35.76999,1.220367,0.0,-1.478379E-4,0.0/
     18
            C
     19
    20
                   DATA D/42.14702865,-4344.343807,-12.84596753,
                 1 0.004008372507,0.0313605356,862.07/
    21
    22
            C
                   DATA E/34.57.57.63811,43.63220,-42.82356,36.70663,0.0/
    23
    24
            C
    25
                   DATA F/0.023815,-336.80703,2.798823E-4,-2.123734E-7,
                 1 5.999018E-11,0.0/
    26
    27
            C
     28
                   DATA R,TCRIT,SB,CC/0.078117,848.07,0.0019,-4.5/
    29
                    DATA TR, PR, UVTRPR/419.67, 0.74137, 2032163.0/
    30
                     END
    31
            C
    32
               BEGIN MAIN PROGRAM.
    33
            C
    34
    35
                    REAL Y(2), YP(2), A(6), B(6), C(6), D(6), E(6), F(6), R, CK,
    36
                 1 SB,P,MS,ERF(150,2),TCRIT,TR,PR,CD,CC,AT,UV,AS,KLTS
    37
                     REAL Z(4)
    38
                     REAL MI, ME, WME, WMI, WTS, TS, WMASS
     39
            C
    40
                    COMMON/ALPHA/A, B, C, D, E, F, R, CC, SB, CD, AT, UV, TCRIT, TR, PR,
    41
                 1
                        UVTRPR, AS
    42
            C
               READ IN ERROR FUNCTION VALUES FOR USE IN SUBROUTINE MASS.
    43
                                                                              DATA
    44
               LOCATED IN FILE 'ERF'.
    45
                     DO 22 K=1,102
    46
    47
                     READ(7,34) ERF(K,1), ERF(K,2)
                     FORMAT(2F20.9)
    48
             34
    49
             22
                      CONTINUE
            C
    50
    51
            C
    52
            C
            C
    53
               TR.PR.UVTRPR INITIALIZED IN SUBROUTINE PROPS
    54
            C
    55
            C
                 INITIALIZE T,Y(1),Y(2), AT T=0.0 SECONDS.
            C
    56
                 SET AT AND CD, THE VARIABLES WHICH CONTROL VENT FLOW RATE.
    57
            C
    58
                 SET UV, THE ULLAGE VOLUME
```

```
Listing of MAIN+... at 10:07:26 on APR 6, 1984 for CCid=SS3X
    59
                UNITS: T IN SECS., Y(1) IN RANKINE, Y(2) IN LBM, AT IN FT2,
    60
            C
            C
    61
                     UV IN FT3.
            C
    62
                INITIALIZE VARIABLES AT T=0.0
    63
                     T=0.0
    64
    65
                        Y(1)=531.74
                                                          ORIGINAL PAGE IS
    66
                        Y(2)=0.00237026
                                                          OF POOR QUALITY
    67
                        AT=0.0000314902
    68
                        UV=0.006815371
                        CD=0.77
    69
    70
    71
                WRITE OUT INPUT VALUES
    72
                     WRITE(6,38) Y(1),Y(2),AT,UV,CD
    73
                     FORMAT('INITIAL VAPOR TEMPERATURE IS', 2X, F8.3, 'RANKINE'/
              38
    74
                       'INITIAL VAPOR MASS IS', 2X, E11.5, 2X, 'LBM'/
                  1
    75
                       'NOZZLE AREA IS',2X,E11.5,2X,'SQUARE FEET'/
                  1
    76
                       'ULLAGE VOLUME IS',2X,E11.5,2X,'CUBIC FEET'/
                  1
    77
                       'DISCHARGE COEFFICIENT IS', 2X, F6.2)
    78
            C
    79
            C
                 WRITE OUT HEADINGS
    80
    81
                     WRITE(6,71)
    82
                       WRITE(6,72)
                       WRITE(6,73)
    83
                       FORMAT('')
    84
              73
                      FORMAT('TIME',2X,'T VAPOR',4X,'TSAT',5X,'P VAPOR',3X,
'VAPOR MASS',2X,'VENT RATE',3X,'EVAP RATE')
FORMAT('SECS',3X,'KELVIN',4X,'KELVIN',3X,'PASCALS',6X,'KG'
    85
              71
    86
    87
              72
    88
                       8X,'KG/SEC',8X,'KG/SEC')
                  1
    89
    90
    91
                USING A FOURTH ORDER RUNGE KUTTA METHOD TO EVALUATE THE INTEGRALS
            C
                THE FOLLOWING LOOP WILL BE RUN THROUGH 60 TIMES WITH A TIME STEP:
    92
    93
            C
                OF 0.05 SECONDS. TOTAL TEST TIME BEING 3.0 SECONDS.
    94
    95
                        DO 23 KL = 1,60
    96
                        CALL RUNGE(Y,T,YP,P,MI,ME,ERF,TS)
    97
            C
    98
                CONVERT UNITS FROM ENGLISH TO MKS AND WRITE OUT RESULTS
    99
    100
                       WTEMP= (Y(1)-459.67)*5/9-17.77778+273.14
                       WTS=(TS-459.67)*5/9-17.77778+273.14
    101
                      WMASS=Y(2)/2.205
    102
   103
                         WP = P * 6895.0
   104
                        WMI = MI + 14.59
   105
                        WME=ME * 14.59
   106
            Č
                   INCREMENT TIME
   107
   108
   109
                       T=T+0.05
                       WRITE(6,24) T, WTEMP, WTS, WP, WMASS, WME, WMI
   110
   111
                    FORMAT(F4.2,2X,F8.4,2X,F8.4,2X,F8.2,2X,F10.8,1X,E10.4,1X,E11.
              24
   112
              23
                       CONTINUE
                      STOP
   113
                     END
   114
   115
```

SUBROUTINE RUNGE RUNS A 4TH ORDER RUNGE-KUTTA METHOD TO NUMERI-

116

```
Listing of MAIN+... at 10:07:26 on APR 6, 1984 for CCid=SS3X
               CALLY SOLVE THE DIFFERENTIAL EQUATIONS GOVERNING THE SYSTEM.
            C
   117
            C
   118
                    SUBROUTINE RUNGE(Y,T,YP,P,MI,ME,ERF,TS)
   119
                     REAL A(6), B(6), C(6), D(6), E(6), F(6), R, CK
   120
                    SB,P,MS,ERF(150,2),TCRIT,TR,PR,CD,CC,AT,UV,AS,KLTS
   121
                     REAL Z(4)
   122
   123
            C
                     COMMON/ALPHA/A,B,C,D,E,F,R,CC,SB,CD,AT,UV,TCRIT,TR,PR,
   124
                  1
                        UVTRPR, AS
   125
                        REAL ENDRKS, MI, ME
   126
                    REAL KO(2), K1(2), K2(2), K3(2), Y(2), YP(2), NEWY(2)
   127
   128
                    H = 0.05
   129
               TIME STEP, H, SET AT 0.05 SEC
   130
               COMPUTE FIRST APPROX OF SLOPE
   131
   132
    133
                      ENDRKS=1.0
                           CALL DERY(Y,T,YP,P,MI,ME,ENDRKS,ERF,TS)
    134
                      DO 90 J=1,2
    135
                           KO(J)=H*YP(J)
    136
                           CONTINUE
              90
    137
            C
    138
               SECOND APPROX OF SLOPE
                                                          ORIGINAL PAGE 19
            C
    139
            C
    140
                                                          OF POOR QUALITY
                         ENDRKS=0.0
    141
                    Z(2)=Y(2)+KO(2)/2.
    142
                         Z(1)=Y(1)+KO(1)/2.0
    143
                         V=T+H/2.0
    144
                         CALL DERY(Z, V, YP, P, MI, ME, ENDRKS, ERF, TS)
    145
                         K1(1)=H*YP(1)
    146
                                  K1(2)=H*YP(2)
    147
    148
              THIRD APPROX OF SLOPE
    149
    150
                      Z(1)=Y(1)+K1(1)/2.0
    151
                      Z(2)=Y(2)+K1(2)/2.0
    152
                      CALL DERY(Z,V,YP,P,MI,ME,ENDRKS,ERF,TS)
    153
                      K2(1)=YP(1)*H
    154
                      K2(2)=YP(2)*H
    155
    156
            C
                FOURTH APPROX OF SLOPE
             C
    157
    158
                     Z(1)=Y(1)+K2(1)
    159
                      Z(2)=Y(2)+K2(2)
    160
                               V=T+H
    161
                               CALL DERY(2, V, YP, P, MI, ME, ENDRKS, F, TS)
    162
                     K3(1)=H*YP(1)
    163
                     K3(2)=H*YP(2)
    164
    165
             C PREDICT FUTURE Y BASED ON AN AVERAGE SLOPE
    166
    167
                         DO 93 M=1,2
    168
                               Y(M)=Y(M)+(KO(M)+2*K1(M)+2*K2(M)+K3(M))/6.0
    169
                               NEWY(M) = Y(M)
    170
    171
                               CONTINUE
               93
    172
             C
    173
```

C

174

```
Listing of MAIN+... at 10:07:26 on APR 6, 1984 for CCid=SS3X
```

```
175
                  RETURN
                                                         ORIGINAL PAGE 19
176
                END
                                                         OF POOR QUALITY
177
        C
           SUBROUTINE EVALUATES THE VALUES dY(1)/dt AND dY(2)/dt FOR FACH
178
           CALL FROM THE SUBROUTINE RUNGE.
179
180
181
                 SUBROUTINE DERY(Y,T,YP,P,MI,M2,ENDRKS,ERF,TS)
182
                 REAL ENDRKS
183
                 REAL A(6), B(6), C(6), D(6), E(6), F(6), R, CK
184
              1 SB,P,MS,ERF(150,2),TCRIT,TR,PR,CD,CC,AT,UV,AS,KLTS
185
        C
186
                 COMMON/ALPHA/A, B, C, D, E, F, R, CC, SB, CD, AT, UV, TCRIT, TR, PR,
187
              1
                    UVTRPR, AS
188
        C
189
                 REAL Y(3), T, YP(3), MI, ME
190
        C
           CALL SUBROUTINE PROPS TO FIND THERMODYNAMIC PROPERTIES OF THE
191
        C
        C
           LIQUID AND VAPOR, GIVEN Y(1), AND Y(2); THE TEMPERATURE AND MASS (
192
193
           THE VAPOR.
        C
194
195
                  CALL PROPS (Y.T.YP.P.ME, HVTVP, UVTVP, HVTSP, HFGTS, TS, CVTVP, KL)
196
        C
        C
           CALL SUBROUTINE MASS TO COMPUTE THE MASS FLOW RATE ACROSS THE
197
198
           LIQUID-VAPOR INTERFACE
199
200
                  CALL MASS(Y,T,TS,HFGTS,KLTS,VLTSP,MI,ENDRKS,ERF)
201
        C
202
        C
           COMPUTE DY(1)/DT AND DY(2)/DT, THE DERIVATIVES OF VAPOR TEMPERATI
203
           AND VAPOR MASS WITH RESPECT TO TIME.
204
                YP(1) = (HVTSP-UVTVP) *MI/(Y(2) *CVTVP) + (UVTVP-HVTVP) *ME/(Y(2) *CVTVP)
205
206
                YP(2) = (MI - ME) * 32.174
207
        C
208
        C
209
210
                 RETURN
211
                 END
212
        C
213
            SUBROUTINE PROPS COMPUTES THE THERMODYNAMIC PROPERTIES OF THE
        C
           WORKING FLUID, GIVEN THE VAPOR TEMPERATURE AND MAS?
214
215
                 SUBROUTINE FROPS (Y, T, YP, P, ME, HVTVP, UVTVP, HVTCP, HFGTS,
216
              1 TS, CVTVP, KLTS, VLTSP)
217
        C
218
                 COMMON/ALPHA/A, B, C, D, E, F, R, CC, SB, CD, AT, UV, TCRIT, TR, PR,
219
                     UVTRPR, AS
                 REAL Y(2), YP(2), A(6), B(6), C(6), D(6), E(6), F(6), ERF(150.2)
220
221
                 REAL XV(4), XT(4), WV(4), WT(4)
222
                  REAL KLTS, ME, XCV(4)
223
           CRITICAL TEMPERATURE AND RELATIVE TEMPERATURE AND PESSURE OF FREC
224
225
                       8.07
226
                  F . 74317
227
228
                  TK-427,0
229
230
        C
           COMPUTE SPECIFIC VOLUME OF ULLAGE VAPOR, FT3/LBM.
231
        C
232
                 VVTVP=UV/Y(2)
```

```
Listing of MAIN+... at 10:07:26 on APR 6, 1984 for CCid=SS3X
   233
              COMPUTE ULLAGE PRESSURE FROM EQUATION OF STATE, KNOWING TEMPERATE
   234
              OF ULLAGE AND SPECIFIC VOLUME OF ULLAGE VAPOR, UNITS OF P ARE PS
           C
   235
           C
   236
   237
                    P=R*Y(1)/(VVTVP-SB) +(A(2)+B(2)*Y(1)+C(2)*EXP(CC*Y(1)/TCRIT)
   238
                                          +(A(3)+B(3)*Y(1)+C(3)*EXP(CC*Y(1)/TCRIT)
                    /((VVTVP-SB)**2)
   239
                    /((VVTVP-SB)**3) +(A(4)+B(4)*Y(1))/((VVTVP-SB)**4)
   240
                   + (A(5)+B(5)*Y(1)+C(5)*EXP(CC*Y(1)/TCRIT))/((VVTVP-SB)**5)
   241
   242
                     FORMAT(3F15.9)
             3
   243
              CALL THE NEWTONS METHOD SUBROUTINES TO FIND TS, VVTSP, VVTVPR, AND
   244
           C
                        THESE SPECIFIC VOLUMES ARE NEEDED FOR THE CALCULATION
   245
           C
               VVTSPR.
               OF ENTHALPY AND INTERNAL ENERGY.
   246
               NEWTTS USES NEWTONS METHOD TO SOLVE THE VAPOR PRESSURE EQUATION
   247
               FOR TSAT, GIVEN PSAT. NEWTY SOLVES THE EQUATION OF STATE FOR
   248
               SPECIFIC VOLUME, GIVEN TEMPERATURE AND PRESSURE OF THE VAPOR.
   249
                 UNITS ARE: TS IN DEGREES RANKINE, SPEC. VOL. IN FT3/LBM
   250
            C
   251
           C
                    VTOL=0.005
   252
                    TSTOL=0.5
   253
                     CALL NEWTTS (TSTOL, P, TS)
   254
                    CALL NEWTV(VTOL, P, TS, VVTSP)
   255
                    CALL NEWTV(VTOL, PR, Y(1), VVTVPR)
   256
                    CALL NEWTV (VTOL, PR, TS, VVTSPR)
   257
   258
   259
            C ASSIGN TEMPORARY VALUES TO SPECIFIC VOLUMES AND TEMPERATURES TO CO
   260
             INTERNAL ENERGY AND EHTHALPY
   261
            C
   262
            C
                   XT(1)=TR
   263
                    XT(2)=TS
   264
                                                     ORIGINAL PAGE IS
                   \mathbf{X}\mathbf{T}(3)=\mathbf{Y}(1)
   265
                                                     OF POOR QUALITY
   266
                   XT(4)=TS
                   XV(1)=VVTSPR
   267
                   XV(2)=VVTVP
   268
                   XV(3)=VVTSP
   269
                   XV(4)=VVTVPR
   270
   271
               EVALUATE THE INTERNAL ENERGY INTEGRALS IN THIS LOOP
            C
   272
               UNITS OF WV AND WX ARE FT-LBF/SLUG OR FT2/SEC2
            C
   273
   274
    275
                     DO 6 I=1,4
                     IF(I.LE.2) TEMP=TS
    276
                     IF(1.GT.2) TEMP=Y(1)
    277
                     BETA=TEMP*CC/TCRIT
    278
                     WV(I) = ((A(2)-C(2)*(BETA-1.)*EXP(BETA))/(XV(I)-SB)
    279
                         +(A(3)-C(3)*(BETA-1.)*EXP(BETA))/(2.*(XV(I)-SB)**2.)
                  1
    250
                         +\lambda(4)/(3.*(XV(1)-SB)**3.) +(\lambda(5)-C(5)*(BETA-1.)*EXP(BETA)
                  1
    281
                    )/(4.*(XV(I)-SB)**4.))*144.0*32.174
    282
    283
            C
    284
            C
    285
                       WT(I) = (F(1) * XT(I) - F(2) / XT(I) 3/*: T(I) * * 2.) / 2.
    286
```

+(F(4)\*XT(1)\*\*3.)/3. +(F(\*).

CO.:TI NUE

287

288 289

290

C

..)/4.)\*778.17\*32.174

```
ORIGINAL PAGE IS
Listing of MAIN+... at 10:07:26 on APR 6, 1984 for CCid=SS3X
                                                                 OF POOR QUALITY
   291
              COMPUTE INTERNAL ENERGY AND ENTHALPY USING THE VALUES OF WV AND
           C
   292
              UNITS ARE FT2/SEC2 OR FT-LBF/SLUG
           C
   293
   294
                     UVTVP=WV(2)-WV(4)+WT(3)-WT(1)+UVTRPR
   295
                     UVTSP=WV(3)-WV(1)+WT(2)-WT(1)+UVTRPR
   296
                     HVTVP=UVTVP + P+144.0+32.174+VVTVP
   297
                     HVTSP=UVTSP + P+144.0+32.174+VVTSP
   298
   299
               COMPUTE SPECIFIC VOLUME OF LIQUID IN FT3/SLUG
           C
   300
           C
   301
                   CON= 1- (TS/TCRIT)
   302
                    RHOL=E(1) +E(2)*CON**(1./3.) +E(3)*CON**(2./3.) +
   303
                     E(4)*CON + E(5)*CON**(4./3.)
   304
                    VLTSP=32.174/RHOL
   305
   306
            C
           C COMPUTE DP/DT
   307
           C
   308
           C
   309
                    DPDT=(-D(2)*ALOG(10.0)/(TS**2.) +D(4)*ALOG(10.) +D(3)/TS
   310
                    -D(5)*D(6)*ALOG(D(6)-TS)/(TS**2.) +D(5)/TS)*EXP(ALOG(10.)
   311
                    *(D(1)+D(2)/TS +D(4)*TS) +D(3)*ALOG(TS) +D(5)*(D(6)-TS)*
    312
                 1 ALOG(D(6)-TS)/TS)
    313
    314
               COMPUTE ENTHALPY OF FORMATION
            C
    315
   316
            C IN FT2/SEC2
    317
            C
    318
                    HFGTS=TS*(VVTSP-(VLTSP/32.174))*DPDT*144.0*32.174
    319
    320
            C COMPUTE K, THERMAL CONDUCTIVITY OF THE LIQUID
    321
                UNITS ARE LBF/SEC-R. A LINEAR CURVE FIT IS USED.
            C
    322
            C
    323
                    KLTS=(0.111562-TS*0.000115)*0.216158
    324
            C
    325
               COMPUTE CV, THE SPECIFIC HEAT, AT TEMPERATURE OF THE VAPOR
            C
    326
            C
    327
                    CV0=F(1)+F(2)/(Y(1)**2.) +F(3)*Y(1) +F(4)*Y(1)**2.+F(5)*(Y(1)**2.)
    328
            C
    329
                THE DO LOOP EVALUATES AN INTEGRAL TO FIND SPECIFIC HEAT AT TV
    330
            C
            C RELATIVE TO THE SPECIFIC HEAT AT T-RELATIVE
    331
    332
                      DO 357 L=2.4.2
    333
                     XCV(L)=Y(1)*(-CC/TC)**2.*EXP(CC*Y(1)/TC)*(-C(2)/(XV(L)-SB)
    334
                      -C(3)/(2.*(XV(L)-SB)**2.) -C(5)/(4*(XV(L)-SB)**4.))*144.*32
    335
             357
                    CONTINUE
    336
    337
               XCV IN UNITS OF FT2/SEC2-R, CONVERT CV0, R TO THOSE UNITS
    338
            C
            C
    339
                      CV0=CV0*778.16*32.174
    340
                      R=R*144.*32.174
    341
    342
            C
               COMPUTE CV, THE SPECIFIC HEAT CONSTANT
    343
            C
    344
                      CV=CVO + XCV(2) - XCV(4)
    345
                     CVTVP=CV
    346
    347
            C
               COMPUTE THE MASS FLOW RATE THROUGH THE NOZZLE BASED ON THE BULK
            C
    348
```

```
Listing of MAIN+... at 10:07:26 on APR 6, 1984 for CCid=SS3X
            C
   349
               PROPERTIES OF THE VAPOR
                                                              ORIGINAL PAGE 19
   350
            C
                IN UNITS OF SLUGS/SEC
                                                             OF POOR QUALITY.
   351
            C
   352
                       CP=R + CV
                       ALPHA=(CP/CV)**0.5 *(2/((CP/CV)+1.))**(((CP/CV)+1.)/(2.
   353
   354
                 1
                        *((CP/CV)-1.)))
   355
                       ME=CD*ALPHA*P*AT*144./((R*Y(1))**0.5)
            C
   356
   357
                    R=R/(144.+32.174)
   358
   359
                  RETURN
                  END
   360
            C
   361
   362
   363
   364
                    SUBROUTINE NEWTV (ERROR, PRESS, TEMP, X)
                    REAL A(6), B(6), C(6), D(6), E(6), F(6), R, CK,
   365
                 1 SB,P,MS,ERF(150,2),TCRIT,TR,PR,CD,CC,AT,VU,AS,KLTS
   366
   367
   368
            C
   369
                    COMMON/ALPHA/A, B, C, D, E, F, R, CC, SB, CD, AT, VU, TC, TR, PR,
   370
                 1
                        UVTRPR, AS
            C
   371
            C
   372
            C
   373
           C
   374
   375
           C
                 THIS ROUTINE USES NEWTONS METHOD TO FIND THE ROOTS OF THE
           C
              EQUATION OF STATE EQUATION, THE SPECIFIC VOLUME.
   376
   377
            C INITIAL GUESS FOR SPECIFIC VOLUME
   378
   379
           C
   380
                    X=R*TEMP/PRESS
           C
   381
   382
           C
               PERFORM NEWTONS METHOD UNTIL ERROR IS LESS THAN VTOL
   383
   384
                    DO 40 J=1.7
                   Z=R*TEMP/(X-SB) + (\lambda(2)+B(2)*TEMP+C(2)*EXP(CC*TEMP/TC))
   385
   386
                 1 /((X-SB)**2)
                                     +(A(3)+B(3)*TEMP+C(3)*EXP(CC*TEMP/TC))
                 1 /((X-SB)**3)
                                     +(A(4)+B(4)*TEMP)/((X-SB)**4) +
   387
                 1 (A(5)+B(5)+TEMP+C(5)+EXP(TEMP+CC/TC))/((X-SB)++5)-PRESS
   388
   389
                    CON=CC*TEMP/TC
                    DZDV = -(R * TEMP) / (X - SB) * * 2. -2. * (A(2) + B(2) * TEMP + C(2) * EXP(CON))'
   390
   391
                   /(X-SB)**3. -3.*(A(3)+B(3)*TEMP+C(3)*EXP(CON))/(X-SB)**4.
                 1
                    -4.0*(A(4)+B(4)*TEMP)/(X-SB)**5. -5.*(A(5)+B(5)*TEMP)
   392
                 1
   393
                 1 + C(5) * EXP(CON))/(X-SB) * * 6.
   394
           C
   395
           C
               COMPUTE NEW SPECIFIC VOLUME
   396
   397
                       X=X-Z/DZDV
   398
                       IF(Z/DZDV.LT.ERROR) GO TO 40
   399
             40
                        CONTINUE
                        RETURN
   400
   401
                        END
   402
                   SUBROUTINE NEWTTS (ERROR, PRESS, X)
                    REAL A(6), B(6), C(6), D(6), E(6), F(6), R, CK,
   403
                 1 SB,P,MS,ERF(150,2),TCRIT,TR,PR,CD,CC,AT,VU,AS,KLTS
   404
           C
   405
```

406

```
Listing of MAIN+... at 10:07:26 on APR 6, 1984 for CCid=SS3X
   407
           C
                    COMMON/ALPHA/A, B, C, D, E, F, R, CC, SB, CD, AT, VU, TCRIT, TR, PR,
   408
                       UVTRPR, AS
   409
                 1
   410
           C
              THIS ROUTINE USES NEWTONS METHOD TO FIND THE ROOTS OF THE
   411
           C VAPOR-PRESSURE EQUATION: THE SATURATED TEMP CORRESPONDING TO
   412
           C THE GIVEN P
   413
   414
           C
              AN INITIAL GUESS FOR X
   415
           C
                                                          ORIGINAL PAGE 19
   416
           C
                                                          OF POOR QUALITY
                   X=560.0
   417
           C
   418
               USE NEWTONS METHOD UNTIL ERROR IS LESS THAN TSTOL
   419
   420
                    DO 75 K=1,7
   421
                    DZDT = (-D(2)*ALOG(10.0)/(X**2.) + D(4)*ALOG(10.) + D(3)/X
   422
                   -D(5)*D(6)*ALOG(D(6)-X)/(X**2.) +D(5)/X)*EXP(ALOG(10.)
   423
                    *(D(1)+D(2)/X +D(4)*X) +D(3)*ALOG(X) +D(5)*(D(6)-X)*
   424
                    ALOG(D(6)-X)/X)
   425
                    Z=EXP((D(1)+D(2)/X +D(4)*X)*ALOG(10.) +D(3)*ALOG(X) +
   426
                 1 D(5)*(D(6)-X)*ALOG(D(6)-X)/X) -PRESS
   427
   428
                COMPUTE NEW VALUE FOR TEMP SATURATED
            C
   429
   430
                    X=X-Z/DZDT
   431
                    IF(Z/DZDT .LT. ERROR) GO TO 75
   432
   433
             75
                     CONTINUE
                     RETURN
   434
                     END
   435
            C
     1
     2
            C
               THIS ROUTINE COMPUTES THE MASS FLUX ACROSS THE LIQUID VAOR INTER-
            C
      3
               FACE, THE EVAPORATION RATE. DUHAMMELS SUPERPOOSITION INTEGRAL IS
            C
               USED IN APLYING THE SEMI-INFINITE SOLID WITH TRANSIENT SURFACE
      5
            C
               TEMPERATURE.
      6
                IMPROVED MASS USING NEW INDICIES TO GIVE PHI(1)=TS
      7
            C
     8
                      SUBROUTINE MASS(Y,T,TS,HFGTS,KLTS,VLTSP,MI,ENDRKS,ERF)
      9
                     COMMON/ALPHA/A,B,C,D,E,F,R,CC,SB,CD,AT,UV,TCRIT,TR,PR,
     10
                        UVTRPR, AS
     11
                 1
                      REAL ENDRKS
     12
                      REAL PHI(6), KLTS, MI, ERF(150,2), THETA(100)
     13
                     REAL U(10,10),MT(10,10),MX(10),MB(10),MR(10)
     14
                       INTEGER N, NN, IV(10)
     15
            C
     16
                     NN=(T+0.01)/0.05 + 1
     17
                     IF(NN.LT.2) SAVED=0.0
     18
     19
            C
               NN IS THE NUMBER OF TIME STEPS WHICH HAVE TAKEN PLACE UP TILL NOW!
     20
            C
     21
     22
              COMPUTE MASS FLOW RATE 1 TIME PER RUNGE-KUTTA STEP
     23
                      IF (ENDRKS.EQ. 0.0) GO TO 123
     24
     25
     26
            C
                      THETA (NN)=TS
     27
                       IF(NN.LT.2) GO TO 123
     28
            C
     29
```

```
Listing of MAIN+... at 10:07:26 on APR 6, 1984 for CCid=SS3X
    30
             AS IS THE LIQUID SURFACE AREA IN FT2
           C
    31
           C
                       AS=0.0599332
    32
           C CALCULATE SPECIFIC HEAT OF LIQUID BY LINEAR CURVE FIT
    33
    34
           C UNITS FT-LBF/SLUG-R
    35
           C
                       CLTS=(TS+0.000031666+0.190144)+778.16+32.174
    36
    37
           C
    38
              CALCULATE AALPHA. THERMAL DIFFUSIVITY
    39
    40
                        AALPHA=KLTS*VLTSP/CLTS
    41
           C
    42
              COMPUTE THE DEPTH AT WHICH THE TEMPERATURES IN THE FLUID
              WILL BE APPROXIMATED. THE PENETRATION DEPTH IS FOUND, AND THEN
    43
    44
              OF THIS VALUE IS USED AS THE REGUON IN WHICH THE TEMPERATURES WILL
    45
           C
              BE DETERMINED. THIS DEPTH IS THEN DIVIDED INTO 6 LOCATIONS.
           C
    46
    47
                     DEPTH=0.10*1.39*2.*((AALPHA*T)**0.5)/6.
    48
           C
    49
           C COMPUTE TEMP AT SIX LOCATIONS, STARTING AT THE LIGUID-VAPOR IN-
    50
           C TERFACE USING DUHAMMEL'S SUPERPOSITION APPLIED TO A SEMI-INFINITE
    51
           C SOLID WITH TRANSIENT SURFACE TEMPERATURE
    52
                      DO 88 I=1,6
                      DELX=(1-1)*
                                     DEPTH
    53
           C
    54
    55
           C
                 IF TIME=0.0, LIQUID IS UNIFORM TEMP AT TSAT
           C
    56
    57
                      IF(T.EQ.0.0) PHI(I)=TS
    58
                      IF(T.EQ.0.0) GO TO 88
    59
           C
                                                           ORIGINAL PAGE 19
    60
                   PHI(I)=THETA(1)
                                                           OF POOR QUALITY
                   DO 90 K=2.NN
    61
    62
           C
    63
                    DELT=T-(K-2)*0.05
           C
    64
                          VAL=DELX/(2.*(DELT*AALPHA)**0.5/
    65
    66
           C
    67
           C
              FIND ERF(VAL)
    68
           C
    69
                                   DO 77 J=1,102
    70
                                   IF(VAL.LT.ERF(J,1)) GO TO 83
                                   CONTINUE
    71
              77
    72
                      WRITE(6,5) J
    73
             5
                      FORMAT(13)
    74
                      ERFVAL=ERF(J-1,2)+(ERF(J,2)-ERF(J-1,2))+(VAL-ERF(J-1,1))/
             83
    75
                          (ERF(J,1)-ERF(J-1,1))
    76
             19
                         ERFC=1-ERFVAL
    77
           C
    78
                          PHI(I) = (THETA(K) - THETA(K-1)) * ERFC + PHI(I)
    79
                          IF(K.GT.70) GO TO 90
                    CONTINUE
    80
            90
    81
                    CONTINUE
             88
           C
    82
           C
              SET UP THE COEFFICIENT MATRIX FOR A LEAST SQUARES THIRD
    83
    84
              ORDER CURVE FIT.
    85
    86
                    N=4
```

87

U(1,1)=6.

```
Listing of MAIN+... at 10:07:26 on APR 6, 1984 for CCid=S53X
                    U(1,2)=15.*DEPTH
    88
    89
                    U(2,1)=15.*DEPTH
    90
                    U(1,3)=55.*DEPTH**2.
    91
                    U(2,2)=55.*DEPTH**2.
    92
                    U(3.1)=55.*DEPTH**2.
                                                     ORIGINAL PAGE 19
    93
                    U(1,4)=225.*DEPTH**3.
    94
                    U(2,3)=225.*DEPTH**3.
                                                     OF POOR QUALITY
                    U(3,2)=225.*DEPTH**3.
    95
    96
                    U(4,1)=225.*DEPTH**3.
    97
                    U(2,4)=979.*DEPTH**4.
    98
                    U(3,3)=979.*DEPTH**4.
                    U(4,2)=979.*DEPTH**4.
    99
                    U(3,4)=4425.*DEPTH**5.
   100
                    U(4,3)=4425.*DEPTH**5.
   101
   102
                    U(4,4)=20515.*DEPTH**6.
            C
   103
            C
                IN ORDER FOR MORE ACCURATE MARTRIX ARITHMETIC, THE VALUES OF PH1
   104
            C
                   WILL BE SCALED DOWN TO THE SAME ORDER OF MAGNITUDE AS THAT OF
   105
            C
                   DELTA X.
   106
            C
   107
            C
   108
                      WRITE(6.65) THETA(1)
            C
   109
                     WRITE(6,65) TS
   110
                    DO 66 II=1,6
                      PHI(II)=PHI(II)-THETA(1)
   111
            C
                     WRITE(6,65) PHI(II)
   112
   113
             65
                     FORMAT(F15.6)
                     CONTINUE
   114
             66
   115
            C
            C
   116
                    MB(1)=PHI(1)+PHI(2)+PHI(3)+PHI(4)+PHI(5)+PHI(6)
   117
                    MB(2)=DEPTH*(PHI(2)+2*PHI(3)+3*PHI(4)+4*PHI(5)
   118
   119
                     +5*PHI(6))
   120
                   MB(3)=DEPTH**2*(PHI(2)+4*PHI(3)+9*PHI(4)+16*PHI(5)
   121
                     +25*PHI(6))
                   MB(4) = DEPTH ** 3* (PHI(2) + 8*PHI(3) + 27*PHI(4) + 64*PHI(5)
   122
                    +125*PHI(6))
   123
   124
            C
   125
            C
                CALL THE SUBROUTINES SLUD AND SLIR. SLUD COMPUTES THE LU-DECOMP-
            C
                OSITION OF THE MATRIX U. SLIR COMPUTES A SOLUTION TO THE SYSTEM
   126
            C
                OF LINEAR EQUATIONS U*MX=MB.
   127
            C
   128
                     CALL SLUD(N, 10, U, 10, MT, IV)
   129
                     CALL SIR(N, 10, U, 10, MT, IV, MX, MB, MR, IER)
   130
            C
   131
            C
   132
            C
                      WRITE(6,122) MX(1), MX(2), MX(3), MX(4)
   133
                      FORMAT(4E15.8)
   134
             122
   135
            C
   136
            C
   137
                       DTDX0=MX(2)
                       SAVED=DTDX0
   138
   139
                       GO TO 124
             123
   140
                       DTDX0=SAVED
   141
            C
               COMUTE MASS FLOW RATE BASED ON THE SLOPE AT THE INTERFACE, REPRE-
   142
            C
            C
   143
               SENTED BY MX(2).
   144
            C
                        MI = AS * KLTS * DTDX 0 / HFGTS
   145
             124
```

### Listing of MAIN+... at 10:07:26 on APR 6, 1984 for CCid=SS3X

146 RETURN 147 END

```
INITIAL VAPOR TEMPERATURE IS
                                          531.740RANKINE
                                                             ORIGINAL PAGE IS
 2
       INITIAL VAPOR MASS IS 0.23703E-02 LBM
                                                             OF POOR QUALITY
 3
       NOZZLE AREA IS
                         0.31490E-04
                                        SQUARE FEET
 4
                           0.68154E-02
       ULLAGE VOLUME IS
                                          CUBIC FEET
 5
6
       DISCHARGE COEFFICIENT IS
                                       0.77
                          TSAT
                                               VAPOR MASS
       TIME
              T VAPOR
                                    P VAPOR
                                                             VENT RATE
                                                                          EVAP RAT
 7
       SECS
               KELVIN
                          KELVIN
                                    PASCALS
                                                  KG
                                                              KG/SEC
                                                                             KG, SE
 8
 9
       0.05
              295.3511
                         294.1243
                                    91584.75
                                               0.00102505 0.9752E-03
                                                                         0.0
                                                                         0.3253E-C
                         292.8953
10
       0.10
              295.3027
                                    87597.38
                                               0.00097898
                                                           0.9328E-03
11
       0.15
              295.2554
                         291.7068
                                    83870.31
                                               0.00093605 0.8932E-03
                                                                         0.5444E-C
       0.20
              295.2085
                         290.5537
                                    80373.00
12
                                               0.00089588 0.8561E-03
                                                                         0.7133E-C
                         289.4314
       0.25
                                               0.00085822 0.8211E-03
13
              295.1621
                                    77084.81
                                                                         0.8537E-0
14
       0.30
              295.1165
                         288.3411
                                    73989.19
                                               0.00082285 0.7882E-03
                                                                         0.9737E-C
       0.35
15
              295.0713
                         287.2834
                                    71085.00
                                               0.00078975
                                                           0.7574E-03
                                                                         0.1108E-C
16
       0.40
              295.0264
                         286.2517
                                    68333.63
                                               0.00075845
                                                           0.7281E-03
                                                                         0.1170E-C
17
       0.45
              294.9817
                         285.2500
                                    65745.81
                                               0.00072908
                                                           0.7006E-03
                                                                         0.1270E-C
       0.50
              294.9373
                         284.2720
                                    63295.86
                                               0.00070133
18
                                                           0.6746E-03
                                                                         0.1327E-G
19
       0.55
              294.8931
                         283.3237
                                    60991.94
                                               0.00067529
                                                            0.6501E-03
                                                                         0.1415E-C
20
       0.60
              294.8489
                         282.4033
                                    58814.86
                                               0.00065071
                                                           0.6269E-03
                                                                         0.1472E-C
              294.8049
21
       0.65
                         281.5078
                                    56759.19
                                               0.00062755
                                                           0.6051E-03
                                                                         0.1528E-C
22
       0.70
              294.7610
                         280.6326
                                    54806.49
                                               0.00060558
                                                           0.5843E-03
                                                                         0.1554E-0
23
                                    52959.86
       0.75
              294.7170
                         279.7825
                                               0.00058484
                                                           0.5647E-03
                                                                         0.1597E-C
24
       0.80
              294.6731
                         278.9617
                                    51223.87
                                               0.00056536
                                                           0.5462E-03
                                                                         0.1661E-0
25
        0.85
              294.6292
                         278.1584
                                    49571.90
                                               0.00054686
                                                           0.5286E-03
                                                                         0.1674E-0
                                    48010.46
26
        0.90
              294.5852
                         277.3801
                                               0.00052938
                                                            0.5120E-03
                                                                         0.1710E-D
27
        0.95
                                    46552.53
              294.5415
                         276.6360
                                               0.00051309
                                                            0.4965E-03
                                                                         0.1785E-0
28
        1.00
              294.4976
                         275.9126
                                    45170.95
                                               0.00049767
                                                            0.4818E-03
                                                                         0.1808E-0
              294.4534
29
                         275.2104
                                    43861.89
                                               0.00048307
        1.05
                                                            0.4679E-03
                                                                         0.1830E-Q
30
        1.10
              294.4092
                         274.5315
                                               0.00046929
                                    42624.61
                                                            0.4548E-03
                                                                         0.1858E-0
31
        1.15
              294.3645
                         273.8606
                                    41428.80
                                               0.00045598
                                                            0.4420E-03
                                                                         0.1823E-0
        1.20
                         273.2078
                                               0.00044336
32
              294.3198
                                    40293.94
                                                           0.4300E-03
                                                                         0.1837E-0
33
        1.25
              294.2751
                         272.5894
                                    39239.15
                                               0.00043164
                                                           0.4187E-03
                                                                         0.1901E-0
        1.30
              294.2300
                         271.9839
                                    38228.84
34
                                               0.00042042 0.4080E-03
                                                                         0.1892E-0
                         271.3838
                                               0.00040955 0.3976E-03
35
        1.35
              294.1846
                                    37248.34
                                                                         0.1854E-0
36
        1.40
              294.1389
                         270.8091
                                    36328.45
                                               0.00039935
                                                           0.3878E-03
                                                                         0.1889E-0
37
        1.45
              294.0933
                         270.2588
                                    35464.63
                                               0.00038979
                                                            0.3786E-03
                                                                         0.1920E-0
38
        1.50
              294.0471
                         269.7190
                                    34633.59
                                               0.00038059
                                                            0.3698E-03
                                                                         0.1903E-0
                                               0.00037196
39
        1.55
              294.0010
                         269.2026
                                    33853.73
                                                           0.3615E-03
                                                                         0.1932E-0
40
        1.60
              293.9543
                         268.7019
                                    33110.49
                                               0.00036375
                                                            0.3536E-03
                                                                         0.1933E-0
                         268.2014
              293.9075
41
        1.65
                                    32380.82
                                               0.00035569
                                                            0.3458E-03
                                                                         0.1886E-0
       1.70
42
              293.8604
                         267.7234
                                    31696.46
                                               0.00034814
                                                            0.3385E-03
                                                                         0.1912E-0
        1.75
                         267.2688
                                    31055.70
43
              293.8127
                                               0.00034107
                                                           0.3317E-03
                                                                         0.1938E-0
                                                           0.3252E-03
44
        1.80
                         266.8276
                                    30445.05
                                               0.00033434
              293.7651
                                                                         0.1939E-0
                         266.3921
45
        1.85
                                    29850.50
                                               0.00032779
              293.7170
                                                            0.3189E-03
                                                                         0.1911E-0
46
        1.90
              293.6687
                         265.9607
                                    29271.58
                                               0.00032141
                                                            0.3127E-03
                                                                         0.1884E-0
              293.6201
47
        1.95
                         265.5596
                                    28741.83
                                               0.00031559
                                                            0.3071E-03
                                                                         0.1934E-0
       2.00
                                    28247.04
48
                         265.1802
              293.5713
                                               0.00031014
                                                            0.3018E-03
                                                                         0.1957E-0
                                               0.00030467
4.9
              293.5220
                         264.7917
                                    27748.74
                                                            0.2965E-03
                                                                         0.1897E-0
       2.05
50
       2.10
              293.4724
                         264.4243
                                    27283.37
                                               0.00029955
                                                            0.2916E-03
                                                                         0.1919E-0
                                    26828.18
                                               0.00029455
51
       2.15
              293.4226
                         264.0605
                                                            0.2868E-03
                                                                         0.1892E-0
                         263.7139
                                                            0.2822E-03
52
       2.20
              293.3726
                                    26401.30
                                               0.00028987
                                                                         0.1909E-0
53
       2.25
              293.3223
                         263.3708
                                    25983.02
                                               0.00028528
                                                            0.2778E-03
                                                                         0.1883E-0
              293.2715
54
       2.30
                         263.0532
                                    25601.21
                                               0.00028110
                                                           0.2737E-03
                                                                         0.1921E-0
                                               0.00027683 0.2696E-03
55
                         262.7253
                                    25212.00
                                                                         0.1864E-0
       2.35
              293.2205
       2.40
56
              293.1692
                         262.4270
                                    24861.89
                                               0.00027300
                                                            0.2659E-03
                                                                         0.1911E-0
              293.1177
57
       2.45
                         262.1365
                                    24524.09
                                               0.00026930 0.2623E-03
                                                                         0.1902E-0
58
       2.50
              293.0659
                         261.8228
                                    24164.07
                                               0.00026536 0.2584E-03
                                                                         0.1815E-0
```

#### Listing of -ONE at 10:18:28 on APR 6, 1984 for CCid=SS3X 59 2.55 293.0137 261.5383 23841.94 0.00026184 0.2550E-03 0.1863E-( 261.2417 260.9753 2.60 60 292.9614 23509.52 0.00025820 0.2515E-03 0.1806E-( 61 2.65 292.9087 23214.31 0.00025497 0.2484E-03 0.1855E-( 2.70 292.8560 260.7061 22918.13 0.00025174 0.2452E-03 0.1821E-( 62 0.00024861 0.2422E-03 2.75 292.8027 260.4424 22631.80 63 0.1812E-( 260.1946 2.80 292.7493 22365.78 0.00024571 0.2394E-03 64 0.1828E-( 2.85 259.9565 0.00024293 0.2367E-03 65 292.6956 22111.23 0.1825E-( 2.90 66 292.6418 259.7234 21864.62 0.00024025 0.2340E-03 0.1816E-(

3.00 292.5334 259.2656 21388.68 0.00023506 0.2290E-03

259.5034

2.95

292.5876

67

68

ORIGINAL PAGE IS OF POOR QUALITY

21635.49 0.00023775 0.2316E-03

0.1830E-(

0.1765E-(

```
- Souters: eni
                        0.0.0.0,
0.02.0.02256,
0.04.0.04511,
                        0 08,0.09003,
                        u 10.0.11246.
                        U.12, U.1347&
                        0.14,0.15695,
                        0.16,0.17901,
                        U.18.0.20094,
U.20.U.2227U,
U.Z2.0.24430.
              ìÜ
             11
                        0.24,0.26570,
                        U. 26, U. 28690
             15
                        U. 28, 0.30788,
             10
                        0.30,0.32863,
                        0 32,0.34913,
             18
                        0.34,0.36936,
                        . E . 3 . U . 38933 ,
             20 21 22 23
                        U. 38, 0.40901,
                        0 40,0.42837,
                       0 42.0 44745,

0 45.0 46522,

0 46.0 48466,

0 48.0 50275,
                       0 50.0.52050.
0.52,0.53790.
             28
29
30
                       U.54, G. $5494.
                       U 56, U 57162,
E UU.U 58792,
                       . 68E0 C. U. 386.
              32
                        0 62.0.61941,
             33
34
35
                       0 54,0.63459,
                        ü. 66.0.64538,
                       ŭ 68,0.65278,
                       e 70,0.67780,
0 72,0.69143,
              37
                        w.74,0 7046B,
              37
                        U 76, U. 71754,
                        0.78,0.73001,
0.80,0.74210,
              40
              41
              42
                        e 82,0.75381,
                        ŭ 84, U. 75514,
                        U. 86, D. 77610,
              45
                       U.88,U 78669,
              46
                        0 96.0.79691.
                        U 92,0.80577,
                        0 94,0.81627
              48
                        0 96,0.82542,
              44
                       U.St.U.83423,
                        1 00,0 84270,
                       1 02,0.85084,
1 04,0 85865,
1 06.0 86614,
                       1.08,0.87333
                       1.10,0.88020,
                       1 12,0 88079
                       1 14,0 85308,
1 16.0 89710,
1 18.0 50484,
1 20,0 91031.
              ٥Ú
                       1 22,0 51553
                       1 24,0 92050,
1 26.0 92050,
1 26.0 92973,
1 30,0 93401,
              57
                       1 32,0.93806
                        1 34,0.94191
                       1 36,0 94535
                       1 38.U $4902,
1 4U U $5228,
1 42.U $5338,
              7 U
                       1 44,0 75830
                       1 40,0 56105,
                       1 48,0 96365,
                       1 50.0 96610,
1 52.0 94841,
1 56.0 9763,
1 60.0 9763,
1 64.0 97562,
             76
77
72
78
```

Вu 8 i

£ 4

. 68,0 98247

1 72,0.58500 1 75,0 98717,

ORIGINAL PAGE 19 OF POOR QUALITY

|        | •             |   |
|--------|---------------|---|
| · . `  | 4             |   |
| 88     | 1 56.0.55443, |   |
| 89     | 2 00,0.995322 |   |
| ' YU ' | 2.10,0.997020 |   |
| 71     | 2.20.0.798137 |   |
| ۶2     | 4.30,0.998857 |   |
| 93     | 2.40,0.999311 |   |
| 94     | 2.50,0.55553  | - |
| 43     | 2.60,0.999764 |   |
|        |               |   |
| \$ 6   | 2.70,0.555866 |   |
| 97     | 2.80,0.999925 |   |
| \$8    | 2.50,0.55555  |   |
| 99     | 3.00,0.99978  |   |
| 100    | 3.20,0.555594 |   |
| ĬŨĬ    | 3.40,0.997998 |   |
| 302    | 3 60.1 000000 |   |

# ORIGINAL PAGE IS OF POOR QUALITY

### APPENDIX C

### ALGORITHM FOR DERIVING THERMODYNAMIC PROPERTIES

Four governing equations were obtained from DuPont, (Ref. 3) for R-11; the equation of state, the vapor pressure curve, density of the saturated liquid, and the heat capacity of the vapor.

P=P(v,T); equation of state.

Psat=Psat(Tsat); vapor-pressure curve.

 $S_{\ell} \cdot C_{\ell}(T_{\ell+1})$ : density of saturated liquid.

 $(v_c - C_{v_u}(T);$  heat capacity of vapor.

From these four equations, and given Tv and mv, the thermodynamic properties of the liquid and vapor may be determined as follows. Refer to Fig. C1, a T-S diagram, to identify the states being determined. 1)  $V_V \{ \tau_V, P \} = \frac{V_V}{m_V}$ 

1) 
$$V_V(t_V,P) = \frac{V_V}{m_V}$$

- 2) P=P(v,Tv); determine system pressure from equation of state.
- 3) Tsat=Tsat(P); determine Tsat from vapor-pressure curve.
- 4) Find が、(Tr, Pr)、 が、(Tsat, P)、 が、(Tsat, Pr)、 が、(Tv, Pr)、 from equation of state.
- 5) Cv =Cv (Tv); find heat capacity of vapo1.

6) 
$$U(Tv,P) = \int [T \stackrel{P}{\Rightarrow r} - P] dv + \int Cv_o dT_P + U(Tr,P_r)$$

$$\frac{\sqrt{v_o(Tv,P_r)}}{\sqrt{v_o(Tv,P_r)}} \qquad T_r$$

7) 
$$U(T_{SAT}, P) = \int_{V_{V}(T_{SAT}, P)}^{V_{V}(T_{SAT}, P)} dv + \int_{T_{v}}^{T_{v}} dv dT_{p} + U(T_{r}, P_{r})$$

$$V_{V}(T_{SAT}, P_{r}) = \int_{T_{v}}^{V_{V}(T_{SAT}, P_{r})} dv + \int_{T_{v}}^{T_{v}} dv dT_{p} + U(T_{r}, P_{r})$$

8)  $V_{\ell} = \mathcal{O}_{\ell}(T_{SAT})$  find density of saturated liquid.

9) 
$$h_{fg} = \left(\frac{dP}{dT}\right)_{SAT} \cdot T \cdot \left(N_V(T_{SAT}, P) - N_E(T_{SAT}, P)\right)$$



Figure C1.- T-S diagram for thermodynamic property calculations.

### ADIABATIC DECOMPRESSION MODEL

In order to evaluate the effect of interfacial mass transfer on the ullage pressure response, an adiabatic model was constructed. Derivation is identical to that of the interfacial mass transfer model discussed in the ANALYSIS section of this report, except that the evaporation rate,  $\dot{m}_1$ , is assumed to be zero. The continuity equation, Eq. (3), then becomes

$$\frac{dmv}{dt} = -\dot{m}e \tag{D1}$$

The energy equation, Eq.(8), becomes

$$m_v c_v \frac{dT_v}{dt} + \dot{m}_e (h_v - u_v) = 0$$
 (02)

These two equations, combined with Eq.(9) now define the vapor space behavior. The computer algorithm in App. B is easily modified to solve these governing equations. The MASS subroutine, which calculates  $\hat{m}$ , is removed and in place is put  $\hat{m}$ =0.0. The remainder of the program is unchanged.

### APPENDIX E

### ANALYSIS OF PAST VENTING MODELS

As discussed earlier, the critical element in modeling the pressure response of a cylinder initially filled with a suturated mixture and slowly vented is the method used to evaluate interfacial mass transfer. Labus, et al (Ref. 1) used the equation

$$\frac{\text{mi} \simeq \frac{AigC_{v}(T_{o}-T_{i})}{(\pi a \pm)^{n/2} h + q}$$
(E1)

This equation was obtained by simplifying an analytical expression for the interfacial mass transfer during depressurization for an infinitely planar interface obtained by Thomas and Morse (Ref. 8). Now, assuming that there is no heat transfer across the interface, equations (11) and (12) again apply

$$g = mih_{+g} = kA i \frac{dT}{dx}/x = 0$$
 (E2)

With the definition a=k/pc, equation (E1) becomes

$$\dot{m}_{i} = \frac{A_{i} k \left(T_{o} - T_{i}\right)}{h_{fg} \left(\pi \alpha t\right)^{1/2}}$$
 (E3)

Now, solving for  $dT/dx|_{y=0}$  from equation (E2):

$$\frac{dT}{dx}\Big|_{x \sim 0} = \frac{(T_o - T_i)}{(i r a +)^{1/2}}$$
 (E4)

Equation (E4) is the temperature gradient of the liquid at the interface, and is precisely the temperature gradient at the surface of a semi-infinite planar solid undergoing a step change in surface temperature(ref.2). But, the system being modeled undergoes a transient change in surface temperature. Hence, some method of incorporating this transient effect, such as Dunammel's superposition integral must be employed for proper applicates. If equation (E4).

In deriving equation (E1), Labus, et al made a number of assumptions which greatly reduced the complexity of the equation derived by Thomas and Morse. It was assumed that Tv=Tsat @ Pv. The effect of this assumption was discussed earlier. Also, a term in the original expression of Thomas and Morse was dropped, assuming the effect of that term to be negligible. The validity of this assumption was not evaluated. The equation derived by Thomas and Morse was not used in the present work. Future models may wish to evaluate the

behavior of this equation in it's complete form.

ORIGINAL PAGE IS OF POOR QUALITY